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By E. B. Klunker and F. Edward McLean
SUMMARY

An iteration method is presented for solving the laminar-boundary-
layer equations for compressible flow in the absence of a pressure
gradient wherein the temperature variation of all the fluid thermal
properties is considered. Friction and heat-transfer characteristics
have been calculasted for a stream temperature of -67° F for Mach numbers
from 1 to 10 with the use of values of the heat capacity, conductivity,
and viscoslity determined from experiment. Consideration of the temper-
ature variation of all the fluid thermal properties causes the recovery
factor to decrease substantially with increasing Mach number. Moreover,
the heat-transfer rate is found to be proportional to the difference
between an effective enthalpy, which is a function of both the surface
temperature and stream Mach number, and the surface enthalpy. In con-
trast, the heat-transfer rate is approximately proportional to the dif-
ference between the recovery enthalpy and the surface enthalpy for
solutions which employ & constant Prandtl number. The calculated skin
friction and heat-transfer rates based upon the use of the Sutherland
equation for viscosity and a Prandtl number of 0.75, however, are in
excellent agreement with the results of the present analysis.

INTRODUCTION

Most compressible-flow boundary-layer analyses employ approximate
relations for the temperature variation of the thermal properties. A
simple analytic relation is usually specified for the variation of vis-
cosity with temperature. Moreover, the heat capacity and the Prandtl
number are generally considered to be independent of temperature and
as a consequence the conductivity and viscosity are required to have
the same temperature variation. Experiment shows that these conditions
are not satisfied closely over the wide temperature range which occurs
in a boundary layer in a high-speed flow. The effect of these approxi-
mations on the calculated boundary-lasyer characteristics 1s most easily
studied by considering the laminar-boundary-layer flow on a flat plate.
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Calculations of boundary-layer characteristics which employ approxi-
mate relations for the thermal properties are generally satisfactory as
long as the temperature variation in the boundary layer is not excessive;
the range for which the solutions are satisfactory depends upon the value
of the Prandtl number used in the analysis and upon the viscosity-
temperature relation employed. Various viscosity-temperature relations
and values of the Prandtl number have been used in the analysis of the
laminar boundary layer on a flat plate (refs. 1 to 5, for example). The
choice of a Prandtl number of unity (ref. 1, for example) or of a linear
viscosity-temperature relation (ref. 2, for example) leads to an essen~-
tial simplification, since in each case only one differential equation
need be solved. Better solutions are obtained by taking the Prandtl
number as approximately 0.73 (the value for air at normal temperatures)
and by utilizing a more realistic viscosity-temperature relationship.

The viscosity-temperature relationship is frequently teken as a simple
power law (refs. 1 and 3, for exemple) or as given by the Sutherland
equation (refs. 4 and 5, for example). The Sutherland equation for vis-
cosity shows especially good agreement with experiment over a wide temper-
ature range.

At high supersonic Mach numbers, where the temperature variation
within the boundary layer is large, the assumption of a constant Prandtl
nunber and the use of an approximate viscosity-temperature relation is
not jusitifed a priori. A few calculations of the laminar-boundary-
layer characteristics on a flat plate have been made which have not
imposed these restrictions. Experimental values of the thermal properties
were utilized in some calculations of the laminar-boundary-layer charac-
teristics by an iteration method &t Mach numbers from 1 to 10 in refer-
ence 6 and the thermel properties employed in the differential-analyzer
solutions of references 7 and 8 were taken in part from experiment. For
the latter two analyses, the stream conditions were determined from the
solution. Consequently, a graphical or trial-and-error procedure was
required in the course of the solution to obtain values corresponding
approximately to the desired stream conditions. In the iteration methods
used in reference 6 and in the present analysis, the solutions are deter-
mined for specified stream conditions.

The present investigation is a continuation of the work reported in
reference 6. The purpose is to determine accurately some characteristics
of the boundary layer at high supersonic speeds and to show the effect
of various approximations to the thermal dates of the fluid on the accuracy
of the calculated friction and heat-transfer characteristics. Tabulated
values of the thermal properties, found from experiment, have been
employed in the calculations in order to obtain relisble data. Friction
and heat-transfer characteristics, calculated for a stream temperature
of -67° F for Mach numbers from 1 to 10, are presented in the form of
graphs. Tebulated values of the corresponding velocity and temperature
profiles and their derivatives are available upon request from the



NACA TN 2916

National Advisory Committee for Aeronautics. The iteration method
described herein for the solution of the equations is similar to that
presented in reference 6. The computations are facilitated however
through a different formulation of the equations; the convergence of
the iteration procedure is improved considerably and a troublescme
singulerity is avoided.

SYMBOLS
X,¥ coordinates parallel and normsl to stream direction
u,v components of velocity along x- and y-axes
p density
i coefficient of viscosity
i enthalpy per unit mass
k thermal conductivity
T gbsolute temperature
Cp heat capacity at constant pressure
Uy
NM=¥y—
le
v kinematic viscosity
Uy stream velocity
Pr Prandtl number ,
' i-1iy
3 enthalpy function,
U, /2
a,B integrating factors

n *
v(n) =f Z_pan
0 33




T
c
Subscripts:
1
0
e
T
8

Superscript:

*
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shear stress at surface
Reynolds number

average skin-friction coefficient

local heat-transfer rate per unit aree at surface

ratio of heat capacitles at constant pressure and con-
stant volume

Mach number
temperature recovery factor

constant

free stream or at edge of boundary layer
stagnation condition of stream
effectlive

recovery

surface

dimensionliess quantity based on stream conditions

ANATYSIS

Basic equetions.- With the x-axis teken in the free-stream direc-

tion, the two-dimensional compressible-flow boundary-layer equations
for steady motion in the absence of a pressure gradient may be written

as follows:

Momentum equation:

pu§B+pv§E=—a—(u Bu) (1)
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Continuity equation:

Energy equation:
2= 4+ oV 2= = —(k =) + == 3

wvhere u and v are the velocity components in the direction of the
x- and y-axes, respectively, p 1is the density, T 1s the absolute
temperature, 1 -is the enthalpy per unit mass, M 1s the coefficient
of viscosity, and k is the thermal conductivity. The heat-conduction
term of equation (3) may be expressed in terms of the enthalpy. With
the use of the relation Cp = §15 where Cp is the heat capacity at

oT ‘
constant pressure, the energy equation becomes

2
M, oy oL o Dk ), ,fou )
pu . + pv Sy = 3y< ) + u( ) _( )

For a flow with heat transfer (specified constant surface temper-
ature) or for a flow with zero heat transfer, the three partial-
differential equations which describe the motion in the boundary layer
may be reduced to a set of two ordinary differential equstions. TFor

U
this purpose the laminar-boundary-layer parameter 1 =Yy vl , Where
lx
Uy 1s the stream velocity and V; 1s the kinematic viscosity based
on the stream temperature, is teken as the independent variable. Trans-
forming equation (2) and solving for pv results in

. .
1,v1 J[ a
V = — f——— —_ d
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and after an integration by parts

1 ,"1 N
v =z ﬁ";(pu"l "f pu dTl) (5)
1 0]

Transforming equations (1) and (4) and meking use of equation (5) gives

G mei e ald)-o (6’

A Upla (x ai duz
<§L/; pudﬂ)n Via(_c;a-)+u(a) =0 (7)

With the introduction of the Prandtl number Pr, the nondimensional
function

i-1) 1i-dy

i -1, 2
0 lUl/Z

9 =

and the dimensionless quantities

*
u =

s +
Uy P1 My
equations (6) and (7) become

a /[ x du*) f’ x dau®
— =)+ p* —=—131 =0 8
dn( dn T( dn > (8)
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and
* * fu¥ *

where

|

1

AT
2Jo

The subscript 1 refers to values at the edge of the boundary layer
or values in the free stream and 15 1s the stagnation enthalpy of

the stream.

The transformation of the boundary-layer equations employed herein
follows essentially that of Schuh (ref. 9). This formulation of the
boundary-layer equations for the flat plate has certain advantages over
those in which the velocity (refs. 4 and 5, for example) or a function
related to the stream function (ref. 6, for example) is used as the
independent wvariable. A singularity arises in the solution of the
equations in the latter two forms which complicates the numerical solu-
tion of the equations. In contrast, no singularity occurs in the solu-
tion of equations (8) and (9). Moreover, the iteration method used to
solve these equations converges satisfactorily.

Equations (8) and (9) can be solved numerically by a method of
successive approximations. The thermal quantities are functions only
of the temperature and consequently functions of the independent vari-
able 1. Therefore, the coefficients of the derivatives in equations (8)
and (9) may be considered as known functions of 17 if some initial
solution is given. With the coefficients considered as known functions
of the independent varisble and with the integrating factors

M ¢
- L a
Jy e

a4 = e
ul
-Prlf —%Pr*dn
0 M

and
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the equation of motion (8) and the energy equation (9) may be written as

*
iiu*d—‘l-):o (10)
dn\a dn
afl p*as u*du*2
dn Pr™ dn 8 \dn

Solution of boundary-velue problem.- The solution of equations (10)
and (11) gives the distribution of velocity and enthalpy throughout the
boundary layer subject to certain conditions on the boundaries. Solu-
tions which have zero heat transfer at the surface and solutions with
heat transfer (specified constant surface temperature) are considered
herein. The boundary conditions to be satisfied are:

For an insulated surface:

At the surface ( =0), u* =0 and
&)
oy
*

At infinity (4 = »), u" =1 and d=0

y=0

For a specified constant surface temperature:
At the surface (1 =0), u =0 and 9 = 9, = Constant
At infinity (n = «), u* =1 and 9 =0

The subscript s denotes the values at the surface.

The first integral of equation (10) is

¥*

* du

dn

———————————— .
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and a second integration gives the velocity distribution
5*

where

3(n) =fn%dn

0O H

Since u* =1 for 1 = @, the function C; = —(1-7 and the distribution
J {0
of the shear parasmeter is

&0 aln) (12)
dn  J(e)

and the velocity distribution is

u (13)
J()

Since the boundary conditions on the velocity are the same for both
the boundary conditions of specified constant surface temperature and
zero heat transfer at the surface, equations (12) and (13) are valid for
both surface conditions.

The temperature or enthalpy distribution throughout the boundary
layer is obtained by integrating equation (11). The first integral of
equation (11) satisfying the condition of zero heat transfer is

2~ s(m)e(n) (1)

5le

*
K
¥
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where

11 [ x\ 2
o(n) = 2Pr; f -”—(91—) an
0 B\dn

and after a second integration the enthalpy function § is found as
Pr
9 =‘/p —x B9 4dn (15)
1 83

At the surface 4§ Dbecomes the enthalpy recovery factor

[e0]
Pr*
3. =‘jp — B? an
0 u

The first integral of equation (11) for flow with heat transfer
(specified constant surface temperature) is

Where

1 H*'du* 2
= 2Pr L/m —_——] d
? 1Jo 5(1’1)

and the function C, 1is dependent on the surface temperature, stream

temperature, and Mach number which is to be determined from the boundary
conditions. A second integration gives

9 =9 + CZV -U
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where

LI
U(n) =f B po an
0 K

] *
v(n)=f S
0 p

From the boundary condition at infinity, Co 18 determined as

c 6e - ﬁs
27 ()
where
3y = U(x)
With this value of C2
ey % =% 5 g (16)

and the enthalpy function is

o = 35 - o) + T, - o) (27)

Equations (13) and (15) give the distribution of velocity and
enthalpy (and consequently the temperature) throughout the boundary
layer for the insulated surface whereas equations (13) and (17) give
the distribution of velocity and temperature corresponding to a specified
constant surface temperature. The distributions of shear and heat trans-
fer are determined from equations (12) and (16).
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Method. of numerical solution.- The solution of the equations for
the veloclity or temperature distributions is one of successive approxi-
mations; consequently, some approximate solution for the distribution
of velocity and temperature is requlired. The Blasius solution may be
taken for the distribution of velocity and the parabolic relation between
temperature and velocity for a Prandtl number of unity (ref. 10) may be
used to determine the corresponding temperature distribution. Fewer
iteration steps are required, however, if a more refined solution, refer-
ences 2 and 5; for example, is taken for the first approximation. With
the initial values determined by the method of reference 2, four or
five iterations were required to obtain differences of less than 1/2 per-
cent between the last two iterations (for both the shear stress and the
heat-transfer rate at the surface).

The following procedure was found to be most satisfactory in the
numerical solution. With the initial values of velocity and temperature
given for a specified surface temperature and Mach number as a function
of the independent variable 1 and with the variation of viscosity and
Prandtl mumber with temperature prescribed, the functions £(n), of(y),
and J(q) are determined by numerical integration (the trapezoidal rule
was found to be very satisfactory). The velocity distribution is then
obtained from equation (13). By making use of the shear function given
by equation (12) and the previously calculated values of £(1), the
functions B(n), ?(n), U(n), and V(y) are determined through numerical
integration and the enthalpy function §(n) 1is determined from equa-
tion (17). The corresponding temperature distribution masy be found from
the enthalpy distribution with the use of enthalpy tables. With these
new values of velocity and temperature, the steps outlined sbove are
repeated and a second approximation to the velocity and temperature
distribution is determined. This process is continued until the desired
accuracy is obtained. The procedure for calculating the velocity and
temperature distribution for the insulated surface is similar to that
described for the condition of constant surface temperature. The enthalpy
function in this case, however, is found from equation (15).

Experimental values of the thermal properties or values found from
analytical expressions may be used with equal facility in the computa-
tions. The equations may be simplified somewhat for the particular case
in vhich the Prandtl number is taken as a constant; then, Pr* -1 and

the integrating factor P reduces to oET. For solutions involving a
constant Prandtl number, however, the method of reference 5 is preferable
since the solution can be obtained with less calculation.

RESULTS AND DISCUSSION

Some friction and heat-transfer characteristics at supersonic Mach
nunbers have been computed by the method described in the preceding
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section. Failred experimental values of the viscosity and Prandtl num-
ber, taken primasrily from reference 11, have been used in the computa-
tions. (The calculations were limited to the temperature range in which
experimental data were availsble.) The free-stream temperature was taken
as 392.7° R (-67° F), the value at the isothermal region of the NACA
standard atmosphere, and the corresponding values of the thermal proper-
ties were taken as:

cpy = 7-718 Btu/(slug) (deg)
My = 3.058 x 10°T slugs/(£t)(sec)

ky = 3.227 x 10-6 Btu/(£t) (sec) (deg)

Pr; =0.73

The boundary-layer characteristics presented herein include those
cases which were calculated in reference 6; the same thermal data were
used in both analyses. Some small differences were found between the
results of reference 6 and those calculated by the method presented
herein. These differences are dvue primarily to the poor convergence
of the solutions in reference 6. Additional calculations have been
made for those cases by means of the method of this report in order to
make the results consistent.

The calculated velocity and temperature profiles for several super-
gsonic stream Mach numbers for the insulated surface are presented in
figure 1(a), and profiles for Ts* =1, 2, and 4 are presented in fig-

ures 1(b), 1(c), and 1(d), respectively. (Tabulated values of the
velocity and temperature distributions and their first derivatives, to
four decimal places, together with a chart of the thermal properties
used herein, can be obtained upon request from the National Advisory
Committee for Aeronautics.) The corresponding friction and heat-transfer
characteristics are presented in figures 2 to 6 together with the results
of several other analyses which maske use of various approximations for
the viscosity and Prendtl number.

Skin friction.- The shear stress at the surface + 1is given by

2
T = H(QE) _ % ug(du*)
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where R 1is the Reynolds number Uix/vl. Substituting from equation (13)
results in the following equation for shear stress:

since «(0) = 1. The average skin-friction coefficient cg 1s found
by integration as

x
%plle ° V& 3(=)

The skin-friction coefficients found from equation (18) for the
Insulated surface and for the condition of heat transfer are presented
in figures 2(a) and 2(b), respectively, together with the results from
other analyses for a stream temperature of --67o F. All the analyses
show substantially the same veariation of skin friction with Mach number
for the lnsulated surface except for the solution based upon the linear
viscosity relation u¥ - T* for Pr = 1.0; for these conditions the
skin friction is independent of the Mach number. The present results
and those of reference 5, vhich are based upon & constent Prandtl number
of 0.75 end the use of the Sutherland equation for viscosity, are in
excellent agreement for both the insulated surface and for the specified
constant surface temperatures. The differences between the results of
this paper, those of Moore (ref. 8), and those of Young and Janssen
(ref. 7)l may possibly be attributed in pert to some inaccuracies in
the differential-analyzer calculations, differences in the thermal data,
and a small difference in stream condition - the calculations from refer-
ences 7 and 8 are based upon a nominal stream temperature of 40O0° R.

1Tn reference 8, experimental values of viscosity are used for tem-
peratures up to 3,240° R and for Prendtl number, up to 2,000° R; for
temperatures between 3,240° R and the dissoclation temperature the vis-

0.6
coslity was calculated with the use of the power law m a = < T >
T_3240  \3240
and for temperatures over 2,000° R the Prandtl number was determined from
calculated values of the thermsal properties. Values of the Prandtl num-
ber from various sources and the Sutherland equation for viscosity were
employed in the boundary-layer calculations reported in reference T.
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The agreement of the results based on a power law and a linear viscosity-

temperature relation with the results of this analysis is not so satis-
factory as that of the results which meke use of the Sutherland equation
for wviscosity.

Tt should be noted, however, that the variation of skin-friction
coefficient with Mach number is dependent on the stream temperature and
thus the differences between the results based on a power law and a
linear viscosity-temperasture relation and the results of this analysis
would depend on the stream temperature at which a comparison was made.

% With a linear viscosity-temperature relation of the form
K" - Constant T*, the skin friction is independent of Mach number;

taking the constant as unity results in cfvﬁﬁ = 1.328 for all sur-

face temperatures and stream Mach numbers irrespective of the value of
the Prandtl number. The linear viscoslity relation n* _ Constant T*
was utilized In the calculations of reference 2 for a Prandtl number

of 0.72 and the constant was adjusted to give the correct value of the
viscosity at the surface. This procedure ylelds a variation of skin
friction with Mach number for the insulated surface since the recovery
temperature varies with Mach number; for the condition of constant sur-
face temperature, the skin frictlion is independent of the Mach number
and depends only upon the surface temperature.

Heat-transfer characteristics.-~ The heat-transfer rate per unit
area at the suwrface q i1is given by the expression

2
or MU U/ u¥ gy
R - NP | el by
Y /=0 Prq | ¥1xX M/n=0
and from equation (16), since B =1 and 9 =0 for 7 =0,

T
I /91”1U1 7-1,2% % 1 [mAlte -3 (19)

where ¥y is the ratio of the heat capacities at constant pressure and
constant volume.
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As can be seen from eguation (19), the heat-transfer rate is pro-
portional to the difference between an effective enthelpy function de

and the surface enthalpy function dg (or the difference between the
effective enthalpy 1, and the surface enthalpy is). In contrast,

the heat-transfer rate is approximately proportional to the difference
between the recovery temperature (or enthalpy) and the surface tempera-
ture (or enthalpy) when the Prandtl number is taken as a constant. The
effective enthalpy function and the recovery enthalpy function (the
value of 3 at the surface for an insulated plate) are presented in
figure 3 as a function of the stream Mach number. Both dr and Je

decrease with increasing Mach number end 9 decreases with lincreasing
values of the surface temperature; the functions ¥, and Jde¢ become
identical for the condition of zero heat transfer.

The temperature recovery factor r may be determined from 9.

with the use of enthalpy tables. The recovery factor is presented in
figure 4 as a function of Mach mumber together with the values found
from other analyses. With the assumption that the Prandtl number is
independent of temperature, the recovery factor is approximately equal
to the square root of the Prandtl number for laminar flow for all Mach
numbers (refs. 2 and 5, for example) irrespective of the viscosity-
temperature relation; thus the recovery factor is unity for a Prandtl
number of 1.0 and the recovery temperature equels the stagnation tempera-
ture of the stream. When the variation of Prandtl number with tempersature
is teken into account, however, the temperature recovery factor decreases
substantially with Increasing Mach number. The recovery factors of
reference 7, based upon the use of the Sutherland equation for viscosity
and experimental values of Prandtl number, are in substantial agreement
with the results of the present analysis; the recovery factor is approxi-
mately 0.85 at low Mach numbers and decreases to epproximately 0.76 and
0.65 at Mach numbers of 5 and 10, respectively.

Equation (19) for the heat-transfer rate is considerably more com-
plicated than those determined from enalyses based upon the use of a
constant Prandtl number. The function 3, 18 dependent upon both the

surface temperature and the stream Mach number for a given stream tempera-
ture; whereas the recovery factor (a constent for all Mach numbers) takes
the place of 4d, when the Prandtl number is taken as a constant.

The empirical relation
Be = g
V(oo) (’Sr - 1‘)s)

- 0.006062 T *  (20)

1.35
= 0.30532 -~ 0.001289|2.25 - Mll 3
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represents the variation of 9§, with 9§, within 1 percent for Mach

numbers up to 5 for a stream temperature of -67° F. Values from equa-
tion (20) are compared with the calculated values of the quantities in

4 -9
figure 5. Eliminating -JE—E—YE between equetions (19) and (20) leads
V(e
to the following expression for the heat-transfer rate:

T
1 ’ H.U
q = R 0 LU M2(0.30532 - o.001289|2.25 - uMf135 -
X

Prl 2

0.006062 Tg*) (9. - 9,) (21)

The wvalues of ﬂr presented in figure 3 and the values of the tempera-

ture recovery factor presented in figure 4 for Mach numbers between 5
and 10 were determined from equation (20) with values of 9, and V(x)

calculated for TS* = 2. With these values of 4§, the heat-transfer
rate calculasted from equation (21) agrees with those computed from equa-
tion (19) for TS* =1, 2, and 4 +to within 1%-percent for Mach numbers

from 1 to 10.

Gomparison of heat-transfer coefficients or Nusselt numbers found
from different analyses 1s difficult because of the different tempera-
ture functions which arise in the expressions for the heat-transfer rate.
A direct comparison of the hegt-transfer rates more clearly shows the
effects of the various approximations on the calculated heat-transfer
characteristics. The heat-transfer rate determined by the method of
this analysis is presented in figures 6(a), 6(b), and 6(c) for values
of Ts* =1, 2, and k4, respectively, together with the results of other

analyses.

Figure 6 shows that the local heat-transfer rates calculated with
the use of the Sutherland equation for viscosity and a constant Prandtl
number of 0.75 are in very good agreement with the results of this
analysis for all Mach numbers and surface temperatures considered. Like-
wise the results of reference 8, which employ vaelues of the thermal
properties taken in part from experiment, are in good agreement with
the results of this analysis for Ts* = 1, the only value of surface

temperature where a comparison could be made. The calculated heat-
transfer rates which employ more approximate viscosity-temperature

relatlions are considersbly higher then the values determined by the
method of this report at very high supersonic Mach numbers; below a




18 NACA TN 2916

Mach number of 4 or 5, however, the agreement is generally satisfactory
for a stream temperature of -6T° F.

CONCLUDING REMARKS

Friction and heat-transfer characteristics of the leminar boundary
layer on a flat plate have been calculated for Mach numbers from 1
to 10 for a stream temperature of -67° F with the use of experimental
values for the hest capacity, conductivity, and viscosity. The conse-
quent variability of the Prandtl number throughout the boundery layer
causes the recovery factor to decrease from a value of approximately
0.85 at low Mach numbers to approximately 0.76 and 0.65 at Mach numbers
of 5 and 10, respectively; whereas the recovery factor is approximately
equal to the square root of the Prandtl number for all Mach numbers
when the Prandtl number is independent of temperature. Moreover, the
heat-transfer rate is proportional to the difference between an effective
enthalpy, which is a function of both the surface temperature and stream
Mach number, and the surface enthalpy when the temperature variation of
211 the thermal properties is considered; whereas the heat-transfer rate
is approximately proportional to the difference between the recovery
enthalpy and surface enthalpy for calculations based upon a constant
Prandtl number. Because of the excellent sgreement between the results
of the present analysis and celculations based upon the use of the
Sutherland equation for viscosity and a Prandtl number of 0.75, it
appears that the exact variation of the thermal properties of the fluid
need not be considered in the calculation of skin friction or heat
transfer. More approximate viscoslty~temperature relations and the use
of a Prandtl number of unity introduce significant errors in the calcu-
lated friction and heat-transfer characteristics at Mach numbers above 4
or 5 for a stream temperature of -67° F.

- Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., January 23, 1953.
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Figure 1l.- Velocity and temperature profiles.
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